
Automated Dynamic Formation of Component Ensembles 
Taking Advantage of Component Cooperation Locality  

Filip Krijt, Zbynek Jiracek, Tomas Bures, Petr Hnetynka and Frantisek Plasil 
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic 

{krijt, jiracek, bures, hnetynka, plasil}@d3s.mff.cuni.cz 

Keywords: Distributed coordination, architectural adaptation, ensemble-based component system, autonomic systems. 

Abstract: Smart cyber-physical systems (sCPS) is a growing research field focused on scenarios where a set of 

autonomous software-hardware entities (components) is cooperating via network communication to achieve 

a type of swarm or cloud intelligence. Typically the components’ cooperation is designed at a low level of 

abstraction and their behavior validated via simulations. As a remedy, a declarative language capable of 

specifying high-level component ensembles has been proposed in recent work. By capturing component 

functionality and the cooperation constraints, a specification serves both for generating platform-specific 

implementation and as a model@run.time to support self-adaption via dynamic formation of ensembles. 

However, for a particular specification, multiple possible architectural configurations exist with various 

impact on the system. Given their typically large number, we select the best one via an SMT solver. In this 

paper, we show that scalability of such approach can be supported by exploiting the effect of locality in 

component cooperation and by hoisting specific domain knowledge to the level of architecture. 

1. INTRODUCTION 

Recent proliferation of cheap yet powerful 
hardware components on the market and focus on 
initiatives such as IoT have led to an increased 
interest in Smart Cyber-physical Systems (sCPS). 
Typically distributed (and often decentralized), these 
systems consist of autonomous hardware/software 
entities (components) that are extended with a 
network connection to achieve a form of collective 
intelligence based on opportunistic cooperation, 
enabling them to better fulfil the desired goal(s). An 
efficient description of this cooperation proves to be 
a challenge due to the variability and sheer number 
of situations the system should respond to. This 
results in the need for novel software engineering 
concepts and practices. 

In this paper, we focus mainly on architecting 
self-organizing sCPS, building on the paradigm of 
autonomic component ensembles (Wirsing et al. 
2011) introduced within the ASCENS project (EU 
FP7 FET – http://ascens-ist.eu/). These dynamically 
formed component cooperation groups support many 
of the desired sCPS properties, e.g., dynamicity of 
system architecture and autonomous component 
operation. In particular, we utilize the intelligent 
ensemble (often referred to as ensemble for short 
further on) concept (Bures et al. 2015), which 

provides rich structural constraints and optimization 
constructs.  

By taking advantage of the associated domain-
specific language for ensemble specification, we 
apply a model-driven approach, employing the 
ensemble specification model both at compile-time 
for generating platform-specific implementation, and 
as a model@run.time (Morin et al. 2009) description 
of the required architecture. To enable general 
resolution of the architecture based on this 
specification model, as well as deal with the large 
number of possible architectural configurations, the 
problem is viewed as a SAT problem. An SMT 
solver is periodically used to select the best dynamic 
architecture configuration according to the 
specification model and the current context, i.e., the 
state of the system and its environment. The 
resulting configuration itself is also a 
model@runtime, representing the actual architecture 
of the system. However, finding the best 
configuration is naturally challenging in terms of 
scalability. The goal of this paper is therefore to 
show how the specification model can be extended 
with additional concepts that take advantage of 
application-specific domain knowledge to improve 
scalability.  

The structure of the paper is as follows. Sect. 2 
introduces a running example, and shows how to 



 

model it using the ensemble concepts. In Sect. 3 we 
discuss the scalability limitation of the approach and 
a conceptual way to address it. Sect. 4 describes the 
language concepts we have introduced to address 
scalability. Sect. 5 presents a discussion together 
with a short overview of related work. Finally, 
Sect. 6 concludes the paper. 

2. APPLYING ENSEMBLES 

2.1 Running Example 

To illustrate the ensemble concepts we use a 
simplified example that can nevertheless be used to 
demonstrate many of the properties of ensembles. 
We model a railroad emergency response service in 
which trains move along a one-dimensional space 
representing parallel railroad tracks, with each train 
having a dedicated track. The trains’ fuel tank is not 
of very high quality and occasionally breaks and 
leaks fuel. In such an event, a group consisting of 
several (e.g., 2 to 3) emergency repair vehicles and a 
refueling truck must be dispatched to the train to 
resume its operation. These vehicles travel on roads 
running parallel to the tracks. We assume dense 
placement of railroad crossings, and that the trains 
are equipped with reliable sensors and brakes, 
ensuring that there is no risk of collision with 
vehicles crossing the tracks. 

The goal of the system as a whole is to minimize 
the amount of time the trains are not operable. 
Assuming the time needed for an actual repair and 
refueling is negligible, the main performance goal is 
to get repairers and refueling trucks to the damaged 
trains fast. As all repairers and trucks are equivalent 
in terms of speed, this translates to selecting trucks 
that are near the inoperable train to repair it. 
However, care must be taken not to get too greedy, 
as simply assigning the closest vehicles could easily 
result in another train being left without repairs for a 
long time. For the sake of simplicity, we assume that 
there are enough vehicles to assist all trains 
simultaneously – thus every train will eventually be 
repaired. The described problem can be seen as 
forming emergency groups that are “good” 
according to some global metric, such as how far the 
involved emergency vehicles must travel in total. An 
example of such “good” assignment is in Figure 1. 

2.2 Ensembles and Components 

Thanks to their ability to describe temporary 
collaboration groups that are dynamically formed 
and dissolved based on system’s state and outer 
context, ensembles are very suitable for modelling 
problems like the one outlined above. Modelling 
with ensembles recognizes two main first-class 
concepts: components and ensembles.  

Individual entities in the system are modelled as 
components, entities encapsulating state in the form 
of component knowledge, and behavior, represented 
by periodically executed or event-triggered 
processes. The components are designed to be 
independent, and thus not allowed to directly 
communicate with each other. Instead, the 
cooperation aspect is realized via ensembles, groups 
of components that are dynamically formed based on 
a declarative membership specification provided by 
the architect. Ensembles facilitate cooperation by 
means of a knowledge exchange, allowing the 
developer to specify data transfer. An important 
point is that the ensembles are not created directly, 
but are instead formed by the ensemble runtime 
framework based on the provided 
model/specification. Both the formation and the 
knowledge exchange occur periodically, allowing 
for dynamic system architecture. No overlap of 
components is permitted between the ensembles. 

In the case of our scenario, the actors in the 
system, i.e., trains, repairers, and refueling trucks 
can be seen as components, with knowledge related 
mostly to their geographical position and processes 
handling sensing and actuating (movement), while 
ensembles can be used to model the emergency 
groups created to assist the damaged trains. 

2.3 Modelling with Ensembles 

In Figure 2, we show a particular description of 
our example system using the declarative Ensemble 
Definition Language (EDL) (Bures et al. 2015), 
allowing us to directly state our requirements on 
both shape and optimality, with the runtime 
framework taking care of forming the appropriate 
architecture. Because the understanding of the 
ensemble concepts is critical for the main 
contribution of this paper, we use this EDL 
description to show the semantics. As the EDL draft 
shown in (Bures et al. 2015) has since been backed 
by an implementation, and the language refined, 
there are subtle differences between the form 
presented here and the original syntax. 

To be able to specify an ensemble type, we first 
define the types it depends on – in our case, the 
ensembles deal with trains, repairers and refueling Figure 1: Example of two well-chosen emergency groups. 



 

trucks. On lines 1, 6 and 11, we use the data 
contract construct, which is essentially an interface 
over knowledge, to declare the required fields (such 
as position) for each type of entity in the system. 
Each component can satisfy multiple data contracts.  

Next, we specify the ensemble type used for 
cooperation when repairing the trains, starting on 
line 17. To identify the ensemble, we declare id to 
be a component of the type Train – essentially 
saying that instances of this ensemble type cannot be 
created without being associated with a unique Train 
instance, which can be seen as a sort of coordinator 
of the instance. Apart from being useful for 
restricting the domain of all possible ensemble 
instances, the id serves an additional purpose of 
representing ensemble knowledge, a shared 
knowledge store for the ensemble – with the train 
component being the sole writer, thus avoiding any 
problems with synchronization. 

The main section of the ensemble specification is 
the ensemble membership starting on line 19 and 
consisting of three sections. First, we define the 
shape of the ensemble by declaring the ensemble 
roles that the components can participate in – in this 
case, we say that all ensembles of this type contain 2 
to 3 Repairer components (repairers role, line 21) 
and exactly one Truck component (refueler role, 
line 22). Each role declares its required data 

contract, and the set of roles a component can 
participate in is limited to those whose data contract 
it satisfies. In order for the ensemble instance to 
exist, the cardinalities and the required data contract 
of each role must be satisfied, essentially serving as 
a structural constraint on the shape of the ensemble. 

Next, we place semantic constraints, represented 
by the constraint expression – an arbitrary logical 
expression based on boolean and integer knowledge 
fields (due to the limitations of the underlying 
solver) of ensemble members. In our scenario the 
only constraint is shown on line 24, saying that the 
train in question must have its needsHelp flag set to 
true, i.e., the ensemble instance is not formed unless 
the corresponding train breaks down and publishes 
its desire to get repaired.  

The third part of the membership definition is 
the fitness function, specified with a numeric 
expression. The fitness function is not a constraint, 
but instead provides the optimizing aspect of the 
ensemble membership. If the ensemble formation 
framework must decide between forming two 
variants of a single instance, the one with higher 
fitness value will be chosen. More precisely, 
ensemble instances will be created in such a way as 
to maximize the sum of their fitness values – 
essentially performing global optimization. The 
fitness should therefore be carefully chosen by the 
system architect to capture the intuitive system 
utility (i.e., how good the system is at fulfilling its 
goals) or performance of the system as close as 
possible. In our example, the fitness function can be 
seen on line 25 and is calculated as a sum of inverse 
of distance from the train for all rescuers in the 
ensemble. Finally, knowledge exchange is specified, 
creating a data flow between the members and 
completing the specification. The EDL supports 
simple inline assignments among the ensemble 
members, or deferring to an external implementation 
in platform-specific language, e.g., Java. 

2.4 Ensembles MDE Workflow 

The declarative EDL description is one half of 
the ensembles support, the other half being the 
runtime framework providing the ensemble 
formation capabilities. As of now, the intelligent 
ensemble concepts are supported by a framework 
implementation utilizing the Eclipse Modelling 
Framework (EMF), XText, the Java implementation 
of the DEECo component model (Bures et al. 2013), 
and the Microsoft Z3 SMT solver. Figure 3 captures 
the overall architecture and workflow of the 
framework. While being integrated with the DEECo 
Java implementation, the ensemble formation 
framework can support any environment capable of 

1 data contract Train      
2   position : int // position along the x axis 
(railroad kilometers) 
3   needsHelp : bool 
4 end 
5  
6 data contract Repairer 
7   position : int 
8   target : int     
9 end 
10  
11 data contract Truck 
12   position : int 
13   target : int 
14   fuel : int 
15 end 
16  
17 ensemble RepairTeam 
18   id train : Train 
19   membership 
20     roles 
21       repairers [2..3] : Repairer 
22       refueler : Truck 
23     constraints 
24       constraint train.needsHelp 
25     fitness sum repairers 1 / ((it.position -     
train.position) * (it.position - 
train.position)) + 1 
26   knowledge exchange 
27       refueler.target = train.id 
28       repairers.target = train.id 

 
Figure 2: EDL Specification of the example. 



 

providing the general knowledge container, which 
provides access to knowledge in the form of data 
contracts, capturing the system context. 

The process starts with the EDL file, described 
by an Ecore metamodel and compiled via the EMF 
pipeline. The document object model (DOM) 
representing a particular EDL file is a high-level 
model of the system specification and is used to 
generate the required classes, namely those 
representing the data contracts and ensemble 
instances, as well as a thin wrapper of the ensemble 
formation mechanism. The ensemble formation 
mechanism itself is the most complicated and 
important part of the framework, and is encapsulated 
in an ensemble factory. In the current 
implementation, the factory is realized by a mapping 
to the Z3 solver. This mapping combines the current 
knowledge data gained from the knowledge 
container and the ensemble specification and 
generates a problem description in the form of 
logical formulas for the Z3. An important point here 
is that the ensemble specification is provided in the 
form of the EDL DOM, so the model is used both 
for compile-time code generation and runtime 
specification representation – essentially being used 
in the spirit of the models@run.time approach 
(Morin et al. 2009), lending itself well to modelling 
adaptive systems. After the Z3 is run, the factory 
creates ensemble instances indicated by the results 
of the SMT solver. These instances – together 
another model@run.time representing the desired 
system architecture – are then used to drive 
ensemble formation and the knowledge exchange, 
influencing the data in the knowledge container and 
completing the loop.  

3. ADDRESSING SCALABILITY 

3.1 Scalability Problems 

It can be seen that the system description both 
addresses the example scenario and is complete in 
terms of supporting all possible system 
configurations (i.e., assignments of supporting 
vehicles to damaged trains). Modelling the system in 
this way has many advantages – it (i) lessens the 
mental overhead of the system architect, (ii) makes it 
easier to reason about the properties of the system 
being built, and (iii) provides a clean separation of 
concerns by moving the heavy-weight 
implementation of the cooperation and group 
formation logic from components to the framework.  

However, this neat high-level declarative 
prescription also presents problems. The chief of 
these is the lack of scalability. Due to its level of 
abstraction, the runtime framework cannot take 

advantage of any problem-specific heuristic (e.g., 
assigning the closest repairers), as this cannot be 
inferred from the description. Instead, the 
framework must consider all possible configurations 
and pick the best one based on the valuation of the 
fitness function. As the number of possible 
configurations is exponential with respect to the 
number of components in the system, this approach 
clearly cannot scale. 

3.2 Enabling Performance 

Optimizations 

Instead of trying to directly improve the 
performance of the framework and the underlying 
solver – which would not address the exponential 
nature of the problem itself – we can turn the 
problem around and find a way to inject the missing 
domain knowledge into the general assignment 
mechanism, allowing it to transform the problem to 
a variant of the problem that is easier to solve (i.e., 
digestible for the solver in terms of size and 
complexity) without compromising the utility of the 
system too much. In order to do that safely and 
decide what form the domain knowledge should 
take, we make some important assumptions about 
the class of sCPS systems we want to support. 

Assumption 1: Typically, many of the possible 
configurations satisfying ensemble’s membership 
constraints are undesirable due to low fitness and 
consequently leading to subpar utility of the system. 
In terms of our example, such configurations are 
easily seen, as they are going against our intuitive 
understanding of the fitness function – for example a 
configuration assigning the furthest repairers and 
truck to a train. While the percentage of these 
undesirable configurations highly depends on the 
problem and the threshold, it can be generally 
expected to grow with the scale of the system – for 
example, the larger the area our railroad service 

Figure 3: Framework architecture, with specification in 

red, generated code in blue and platform classes in orange. 



 

covers, the more repairers it has, and the more 
possibilities for assigning repairers that are beyond a 
reasonable operating radius there are. In fact, with 
scale, the undesirable configurations can also 
become more damaging to the system utility – it 
would take the furthest repairers much longer to 
reach the train. 

Assumption 2: A well-designed system is 
influenced by ensemble formation only in terms of 
system utility, not safety. As sCPS are inherently 
distributed and only able to communicate with other 
parts of the system via unreliable channels, such as 
MANETs and other wireless networks, safety 
guarantees cannot be built on top of communication. 
Instead, the components must offer core safety 
guarantees by design, so that a component is still 
capable of secure operation even when cut off from 
other parts of the system. As the ensembles are 
essentially a communication abstraction, they cannot 
be used to guarantee safety. In our example, this can 
be seen in the design of the trains – regardless of any 
network problems, the train is equipped with trusted 
sensors and brakes to avoid any catastrophic 
scenario. If no ensembles are ever formed, a 
damaged train will hamper the system indefinitely, 
but will not endanger any lives. 

Disregarding Configurations. Based on the 
assumptions outlined above, a useful conclusion can 
be reached: It is possible to completely disregard the 
undesirable configurations when deciding what 
ensembles to form. While these configurations are 
valid per se, they represent a situation when the 
system is not performing well, and should never be 
needed under normal circumstances; meaning that 
situations when selecting such a configuration would 
be the right thing to do are also highly improbable. 
The only moment these configurations should be 
realized is when there are no other options for the 
system to utilize – and at such a time, the difference 
between forming badly performing ensembles and 
forming no ensembles at all becomes negligible. As 
ensemble formation only impacts utility and not 
safety, dropping these configurations influences the 
system utility minimally, and safety not at all. 

4. PROPOSED SOLUTION 

4.1 Importance of Locality 

Before we can drop undesirable configurations 
to make the ensemble formation more scalable, we 
must define what form this additional domain 
knowledge should take, and introduce a suitable 
concept to the EDL. In essence, we need a way to 
allow the architect to exactly specify when a 
configuration is to be deemed undesirable, and 

eliminate these before handing the problem 
description over to the solver.  

In Sect. 3.2, we have intuitively rated the 
configuration based on domain-specific properties of 
individual components, e.g., saying that picking 
repairers that are too far from the damaged train 
does not make sense. More generally, this can be 
interpreted as a distance metric expressed in terms of 
the local knowledge of an individual component and 
domain data of the ensemble instance in question, 
and there is a correlation between the distance 
metric and the impact on instance fitness (and by 
extension overall system utility) if this component 
would join. Assuming the existence of such a metric 
is fairly realistic – many sCPS applications tend to 
be very large and deployed on physical entities. It is 
therefore necessary to partition the system into 
manageable parts, often by taking advantage of the 
physical locality of the components both in design 
and execution. This is especially seen when dealing 
with geographical position, but can also take form of 
network distance or a similar property. 

Once we have a metric with suitable properties, 
we can assume that we can separate suitable and 
unsuitable components with a preference function 
based on their computed distance valuation. To 
enable the configuration filtering, we must allow the 
developer to specify this preference in the EDL. 

4.2 EDL Filtering Concepts 

Figure 4 shows the modified EDL ensemble type 
code, which we use to introduce the two concepts 
that enable the identification of the undesirable 
configurations. The code is similar to the original, 
except for the where and limit clauses added to the 
role specification in the ensemble type. 

The purpose of the where clause (line 33) is to 
limit the component selection for a particular role 
only to the components satisfying the corresponding 
condition – unless the where clause is used, all 
components of the declared role type (i.e., satisfying 
its data contract) are considered suitable. The where 
clause can therefore be seen as a threshold-based 
filter. Syntactically, it is a logical expression with a 
single restriction – it can only refer to the ensemble 
knowledge, represented by the defined id name, and 
the knowledge of the component being considered, 
represented by the it keyword. This is in sharp 
contrast with the general constraint clause, which 
can refer to any role and knowledge, thus requiring 
the ensemble structure to be fully decided before its 
evaluation. This restriction allows us to evaluate the 
condition for each candidate component separately 
and potentially discard it before the problem is 
presented to the solver, making the problem smaller. 



 

While the where clause and the hard true/false 
threshold it defines are suitable for many problems, 
sometimes it is more natural to define the filtering 
based on some suitability order, e.g., one defined by 
the distance metric. We have therefore also proposed 
the limit clause, which limits the selection to a 
specified number of best components, ordered by a 
given expression. It should be noted that unlike 
where, limit is not implemented in the current 
version of the runtime, but can be easily supported. 
The usage of the limit clause can be seen on the line 
34. The end effect of the limit clause is similar to the 

where clause, but instead of dropping the 
undesirable configurations entirely, the runtime will 
consider them only when no better options are 
available. Its effect is also more predictable, as it 
will always select at most the specified number of 
components, whereas the where clause can in some 
situations select no components (e.g., every 
component is further than the threshold), or all of 
them (e.g., all components are clustered nearby). 

The details of the concepts’ implementation are 
rather technical and out of scope of this paper. In 
short, before the ensemble factory transforms the 
ensemble specification into formulas, it creates a set 
of possible components for each role in an ensemble. 
Initially, this set consists of components with the 
matching data contract. The filtering concepts are 
evaluated after this type matching phase and further 
restrict the set before passing it on to the Z3 solver – 
the solver itself is therefore unaware of the filtering 
and deals directly with a reduced problem. 

Unlike other intelligent ensemble concepts, the 
where and limit clauses cannot be seen as enhancing 
the expressivity of the ensembles; instead, they are a 
way to inject the missing pieces of domain 
knowledge into ensemble specification and enable 
the solver to perform domain-specific optimizations 
without losing its generality. Being application-
specific, the exact values used for the filtering must 

be decided by the architect based on his experience, 
simulation runs, or logging of the actual application. 

5. DISCUSSION AND RELATED 

WORK 

Discussion: The degree to which the filtering 
concepts are effective highly depends on the used 
filtering expression. Ideally, the expression should 
be chosen in such a way that the components that 
would result in the highest fitness valuation of an 
ensemble will always be preferred. This requires the 
existence of a distance metric as described in 
Sect. 4.1. Alternatively, we may utilize a weaker 
form of a distance metric that only approximates the 
fitness function. In this case, we may cut off some 
configurations that would result in high fitness, with 
the possible loss of utility depending on the density 
of such “good” configurations among those that are 
discarded. If no suitable metric can be found, the 
usefulness of the filtering is severely limited.  

Additionally, if several possible ensemble 
instances had similar sets of filtered suitable 
components, the solver would be much more 
constrained than intended, possibly resulting in a 
markedly reduced system fitness. In the worst case, 
some instances that would otherwise form with 
reasonable fitness would not exist due to their most 
suitable components being needed elsewhere. This 
would also happen without filtering, but in that case, 
the instance may have other candidate components 
to use instead. This effect will be less pronounced in 
systems with strong locality and clear partitioning. 

Finally, it is worth noting that there are situations 
when not all possible ensembles can be formed (e.g., 
if there are not enough repair vehicles for all trains, 
or due to filtering), and that a specific ensemble 
instance (e.g., for a very distant train) is repeatedly 
ignored in favor of other ensembles with higher 
fitness. This lack of progress may be undesirable, 
and while it can be addressed by using a variable 
representing priority of the instance as part of fitness 
functions and filtering, a part of future work can be 
to consider a more systematic way to deal with it. 

The two assumptions from Sect. 3.2 limit where 
the filtering concepts can be used, but not 
unreasonably. Most sCPS are naturally manifested in 
the physical world (e.g., smart cities, smart mobility, 
wearables) and thus exhibit both the low density of 
reasonable configurations (due to geographical 
position) and the need for communication-
independent safety (especially if they interact with 
humans). Of course, if the system requires 
cooperation of all components or is based on reliable 

29 ensemble RepairTeam 
30   id train : Train 
31   membership 
32     roles 
33       repairers [2..3] : Repairer where 
Abs(it.position - train.position) < 100 
34       refueler : Truck limit 10 orderby 
Abs(it.position - train.position) 
35     constraints 
36       constraint train.needsHelp 
37     fitness sum repairers 1 / ((it.position -     
train.position) * (it.position - 
train.position)) + 1 
38   knowledge exchange 
39       refueler.target = train.id 
40       repairers.target = train.id 

 Figure 4: Specification enhanced with filtering concepts. 



 

communication, the assumptions will not hold. 
However, such system is typically of centralized 
nature and will not need the benefits of ensembles. 

Related work: Several frameworks based on the 
concept of ensembles have already been realized and 
the paradigm has been successfully applied to sCPS 
case studies, such as (Hoch et al. 2015). One of these 
ensemble-based frameworks is Helena (Hennicker & 
Klarl 2014). It offers the same core concepts, i.e., 
components with roles and ensembles, however it 
focuses primarily on communication between 
components and does not explicitly capture the 
architecture of an application. Also, it does not 
provide means for optimizing during ensemble 
formation. The same is also true for JRESP 
(http://jresp.sourceforge.net), another ensemble-
based framework. AbaCuS (Alrahman et al. 2016b) – 
a Java-based implementation of AbC (Alrahman et 
al. 2016a) – is not directly an ensemble-based 
framework but it shares several key concepts 
(components with roles and opportunistic 
communication among them described via a set of 
rules and conditions). As the frameworks above, it 
also does not allow explicitly capturing architecture 
and expressing optimizations for establishing 
communication links. 

Conceptually very close to ensemble-based 
systems are multi-agent systems (MAS) with 
communication among agents via coalition 
formation. There are many approaches for coalition 
formation and optimizations, e.g., (Michalak et al. 
2010; Rahwan et al. 2012; Sandholm et al. 1999), 
however they assume fully connected networks and 
thus are not suitable for sCPS (which typically have 
to operate in a loosely coupled environment). 

6. CONCLUSION 

In this paper we have presented the ensemble 
concepts and their model-driven support in the 
intelligent ensembles framework, and highlighted 
the scalability problem. To address it, we have 
introduced new concepts to the EDL language that 
allow the system architect to provide optimization 
hints to the framework. We have also described our 
assumptions and the reasoning behind the concepts, 
particularly the importance of utilizing locality. 

Even though the approach shows promise, it still 
requires a further evaluation. In particular, it is 
necessary to verify that the assumptions from 
Sect. 3.2 are indeed as common to sCPS scenarios as 
expected, and to measure how the use of the filtering 
concepts impacts the properties of the system. 

In terms of future work, it may be worth 
investigating whether the domain knowledge can be 
injected into the solver in a more elegant or more 

powerful form than the one presented here – or 
possibly even inferred from the DSL via language 
analysis. A systematic way to enforce progress, 
mentioned in Sect. 5, remains to be explored as well. 

On the whole however, we believe that this 
approach is promising and allows for easier design 
and implementation of common sCPS scenarios. 
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